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Language production and sentence linearization Research goal: a cognitive model
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Probabilistic nature

» Speakers have access to a probabilistic grammar (e.g. for
processing)

+ How are these probabilities used in generation?
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Task: unordered dependency tree = order of words

Linearization process Probabilistic score function

Recursive procedure
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» conditioned on dependency label, part-of-speech tag (no token
information)
+ ngram probabilities are estimated as trigrams; no smoothing

Re-ranking with size features

Modelling word order variation cases Results

A cat is staring [ at a poor little mouse | [ with a hungry look | BLEU scores

A cat is staring [ with a hungry look ] [ at a poor little mouse ] oo English Persian Italian Russian
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+ some relevant features: sizes of the phrases
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» choice between two options (..., staring, mouse) vs (.., staring, look)

can be modelled as a discriminative re-ranking at each linearization % correct arc directions
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(beam 2) improves the results by up to 8 BLEU points

- Reranking improves significantly over the greedy system, reaching

Data and Set—up almost the performance of the system with beam 2
- discriminative information in terms of two best nodes is crucial

Four UD treebanks: English, Italian, Persian, Russian (development sets) . confims that size features play role in choosing better word orders

Pre-processing: only sentences without punctuation

Conclusion
We can reach competitive performance using a cognitively
plausible architecture with greedy search, probabilistic score

Measures: BLEU and % of arcs having correct direction function and unlexicalized features

Point of comparison: ZGen (Liu et al, 2015) - state-of-the-art transition-
based linearization system; lexicalized, uses large beam (64)



